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In this paper, we present a numerical model for the solution of the classic electromagneto-mechanical coupled problem. The 
dynamical behavior of conducting structures in the presence of a strong magnetic damping was the subject of a high scientific interest 
in the past, leading to several computational models with experimental validation, mainly related to thin shell structures. We extend 
this approach to the treatment of three-dimensional conducting structures. To this purpose, we couple a very effective 3D integral 
formulation in terms of the current density to the 3D dynamical model of the conducting structures. The formulation is validated 
against the experimental results of the TEAM-16 benchmark problem. In the full paper, the importance of the magnetic damping will 
be assessed with reference to the analysis of dynamic response of the vacuum vessel of a fusion device under the strong Lorentz forces 
due to the plasma current disruption.  The complex geometry of the vacuum vessel represents a real challenging problem in this frame. 
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I. INTRODUCTION 
HE DYNAMICAL behavior of conductive structures in the 
presence of a strong magnetic damping was the subject of 

a noticeable scientific interest in the past, leading to several 
computational models with experimental validation, mainly 
related to thin shell structures [1], [2]. More recently, a similar 
coupled problem has been analyzed in the frame of innovative 
applications [3]. One of the drawbacks of the differential 
approaches is the possible numerical instability due to the 
presence of the velocity term in the governing equations 
written in the Euler coordinate system. This term disappears if 
a Lagrangian approach [2], [4], [5] is adopted. However, in 
principle one has to take into account the deformation of the 
structure during the transient. This leads to a large 
computational effort, since one has to re-mesh the domain and 
update the coefficient matrices at every time-step. For this 
reason, an alternative approach based on an integral 
formulation of the electromagnetic problem can be a valuable 
alternative. Suitable sparsification and parallelization 
algorithms, as already proved in the past, can conveniently 
solve the problems arising due to the presence of full matrices. 
The proposed approach, detailed in Section II, is applied to the 
solution of TEAM-16 benchmark problem [1]. In the full 
paper, the effectiveness of the method will be highlighted with 
a complex example of interest for the design of a nuclear 
fusion device. 

II. NUMERICAL MODEL 
We assume a 3D conducting domain Vc in the presence of 

time varying electromagnetic sources. Pulsed eddy currents 
are induced giving rise to Lorentz forces in the conducting 
structure. In the limit of small displacements, after 
discretization, the subsequent deformation of the specimen can 
be obtained as the solution of the following dynamical system: 
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In (1), by using nodal shape functions Ni, the displacement 
( , )tu r in Vc, is expressed as 
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number of degrees of freedom Ndof  is equal to the product of 
the number of nodes and the three components of ( , )tu r . 
Then, u is the column vector made by the Ndof coefficients ui. 
M  and K  are the sparse mass and stiffness matrix, 

respectively, while f(t) is the vector of the nodal Lorentz forces 
defined as: 
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being J the current density and B the magnetic induction. 
The electromagnetic system, in the magneto-quasi-stationary 
limit, with non magnetic materials, is described by the 
following weak formulation in terms of J in a Lagrangian 
coordinate system [6]: 

( )1 [ ] 0,
c c

sV V

dd d
dt

σ τ τ−  ⋅ + ⋅ + =  ∫ ∫W J W A J A      (3) 

with , ,S S∈ ∀ ∈J W and 

{ }2
C ˆ, 0 in , 0 ondiv CS V V= ∈ ∇⋅ = ⋅ = ∂J L J J n     (4) 

Here A[J] is the magnetic vector potential due to the eddy 
current density J, as given by the Biot-Savart law, σ is the 
electric conductivity and As is the vector potential due to the 
sources outside the conducting domain Vc. 
By using solenoidal edge element shape functions

,k k= ∇×W T  J is expressed as 
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where N is the number of independent edges following from 
the application of the tree-cotree gauge [6]. Therefore, the 
integral equation is reduced to the following dynamical system 
[6]: 
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Notice that, with ( , ) ( , )st t≅B r B r , being ( , )s tB r  the field due 
to the sources, and J given by (5), f as defined by (2), is 
expressed as ( ) ( ) ( )Tf t F t I t= − .  

Finally, the coupled electro-magneto-mechanical dynamical 
system (1)-(6) can be written in a compact form as: 

2 2 ( ) 0TM d u dt Ku F t I+ + =            (8) 

( ) 0( ) ( )d LI dt RI F t du dt V t+ − =          (9) 

The inductance matrix has been assumed to be unchanged 
with respect to time under the hypothesis of sufficiently small 
displacements. 
This system is usually computationally very intensive, making 
them difficult to use when a large number of simulations are 
needed, like in the case of the design of the complex 
components of a Tokamak device. For this reason, we analyse 
the possibility of using a suitable modal expansion [7], [8]. In 
this approximation, we compute the Nmode dominant modes Pks 
by solving the generalized eigenvalue problem 
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transformation 1 2 mod... N eu P P P x Px = =   and the 

orthogonality of M  and K  with P , we have: 
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where m  and k  are diagonal matrices (i.e. iT i
iim P M P= , 

iT i
iik P K P= ). If necessary, the system can be further 

simplified by introducing a similar expansion for solving (11). 
These and other more sophisticated approaches will be 
outlined and compared in the full paper. Finally, the system 
(10), (11) is integrated in time by applying the Newmark’s β 
method for solving (10) and the implicit method for (11) [9]. 

III. RESULTS AND DISCUSSION 
The proposed numerical approach has been validated by 

solving the TEAM-16 benchmark problem [1]. In this 
problem, a copper rectangular plate (Lx=115mm, Ly=40mm, 
Lz=0.3mm, electric conductivity σ=5.81×107 S/m, mass 
density ρ=8912kg/m3, Young’s modulus E=1.1×1011 Pa and 
Poisson’s ratio ν=0.34), rigidly clamped at one hand (clamped 
length Lc=10 mm) is placed under a steady uniform magnet 
induction By and a pulsed magnetic field generated by a 27 
turns circular coil. Its outer and inner diameters are 22 mm 
and 20 mm, respectively. The coil height is 24.2 mm. The 

distance between the plate and the coil is 9.5 mm and the 
coordinates of the coil center are (105mm, 0mm). The time 
dependent coil current is i(t)=800[exp(-500t)- exp(-600t)]A.  

The mesh is made of 768 8-nodes brick elements (Fig. 1). 
The stiffness and mass matrices have been computed by the 
commercial code ANSYS. The time evolution of the 
deflection at the point A (105 mm, 7.5 mm, 0.15 mm) with 
By=0.3T is shown in Fig. 1. The results of the computation 
using 3 and 10 vibration modes are compared with the 
experiment, showing a good agreement. 

In the full paper, the main features of this approach will be 
analyzed with a specific concern to fully 3D components of a 
fusion device. In particular, the importance of the magnetic 
damping will be assessed by analyzing the dynamic response 
of the vacuum vessel of a fusion device under the strong 
Lorentz forces due to the plasma current disruption. The 
complex geometry of the vacuum vessel represents a real 
challenging problem in this frame 
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Fig.1.Left: Coil, deformed mesh of the plate and current density distribution at 
t=7ms. Right: Deflection at point A (108 mm 7.5 mm 0.mm) for By=0.3T. 
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